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The problem of the stability of reinforced circular cylindrical shells in bending and 
torsion has numerous applications in different regions of modern technology. Most published 
studies of this problem [I] havebeenconducted in the classical formulation, with the assump- 
tion that the initial stress--straln state is momentless and linear. Below, the problem of 
the stability of a reinforced cylindrical shell under combination loading is solved on the 
basis of nonlinearity of the theory in a moment formulation. 

We will examine a circular cylindrical shell of length L, thickness h, and radius of 
curvature r reinforced with rings and made of a material with the modulus of normal elasti- 
city E and Polsson's ratio 9. 

We subdivide the shell into m parts lengthwise and k parts about its circumference. 
The shell is thus represented by a set of m x k finite elements (FE) of natural curvature 
that are rectangular in plan and k x p (p is the number of rings) curvilinear rod FE rein- 
forcements (the top part of Fig. i). 

We take the following expression [i] for the strains, changes in curvature, and torsion 

of the FE of the shell: 

Ell --'= llX - I -  0"50}12, s = (t/r) (t,, - -  W) + 0.5to~, 

e,..  = ( t / r ) u ,  -? v~ -}- 0 ,02 ,  X** = ohx, X.,, = ( l / r ) o ~ ,  (1 )  

Xl2 = c%x, co, = w , ,  c0, = (t /r)(w~ -5 v). 

Here, x and ~ are the linear and angular coordinates, with the origin at the center of the 
FE of the shell (Fig. i); x and ~ in the subscripts denote differentiation; u, v, and w 
denote displacements along the generatrix, the arc, and the normal. 

The kinematic relations for the rings [2], written in terms of the displacements of the 
shell FE, are represented in the form 

t [ lw  - -  l j t ~  + Iwr162 - -  ( l l r  - -  I ,e ,  + le~) to:: + (e , l  I - -  e2l ) w ~ l ,  ( 2 )  ~,= -~ 

t t [ l l w  + Itt~r + l,w~,~ + (Ir - -  le t - - l , e ~ )  W., - -  

- -  (e , [  + e , l , ) w x ~ , ] ,  l = c o s  r l I - -  s i n  r  R = r - -  e l ,  
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where ex and ea are the eccentricities of the location of a ring; a is the angle between the 
vector of the normal n to the middle surface of the shell and the unit vector e= of the 
principal central axes of inertia of the cross section of the ring; R is the radius of cur- 
vature of the axial line of the ring (Fig. 2). 

The static relations for the elements of the shell and reinforcement are written in the 
form 

T,,  = K(e u + v%2), T22 = K(s22 + v e i l ) ,  T n  = 0 . 5 K ( i  --v)e n ,  

M , t  = D(xt  t -~ vX2,), M , .  = D(7.~2 + vXn),  MI2 --  D(I  - -  v )x lv  

T = E F e ,  M t = E l t x l ,  M s = E I 2 x 3 ,  M ~  = G I t T v  

K : Eh Eha G =-: E 
t - v"'  D = "t2 ( t  - -  v2) ' 2 (I -]-v-------~' 

w h e r e  F i s  t h e  c r o s s - s e c t i o n a l  a r e a  o f  t h e  r i n g ;  I t  a n d  I2  a r e  t h e  m o m e n t s  o f  i n e r t i a  o f  
the cross section of the ring relative to the principal central axes ex, e2; Glt is the 
stiffness of the ring in torsion. 

To consider the displacement of the shell FE as a rigid whole, we take the displacement 
field, bilinear for u and v and bicubic for w, and we introduce functions which constitute 
the complete solution of a system of differential equations expressing the triviality of 
the strains, changes in curvature, and torsion of the shell element (without allowance for 
the nonlinear terms in Eqs. (i), due to the presumed smallness of the rigid rotation of the 
FE): 

u = alxc  p + a2x + a3q~ + a4 + a , r s  2_ a..,orc, 

v = a:.x(p - -  a sxc  + a~rp + a s 2_ a2oxS - -  a.,jc -:- az~s, 

w = agxStp ~ + alozz(p ' + a,,.r~q9 + at2x  3 - -  av~x"(P "~ -1- al~x2cp 2 " -  a l s x~P  -[- a l u x  ~ + alrxcP 3 q a i s x q  ,2 i -  

-t- axgxq) -l- a.,oxc + a2,tP a -~- a2~.~P z + a~:~s -I- a2~c [- a~.zs, 

s = s in q~, c = cos q~. 

The functions describing the rigid displacement of the FE of the shell also cause kine- 
matic relations (2) for the ring element to vanish (without allowance for the nonlinear term 
in the expression for e). 

As the vector of the generalized nodal displacements, we take u[= {u,,vt, w t,0),~, 0)2~, Wxr 

.... u4, v4, w4, ~II,~24, wx~4}, where the superscript T denotes transposition and the subscripts 
denote the numbers of the nodes of the shell FE. 

We then use the method in [3] to construct nonlinear equations of equilibrium in incre- 
ments for the compound FE of the shell with ring, and we use the matrix of the indices to 
formulate the equations of equilibrium for the entire reinforced shell. In matrix form, 
these equations appear as follows: 

r ( U ) A U  = Q - - G ( U ) .  (3)  

Here, G(U) and P(U) are the gradient and the nonlinear Hessian matrix (matrix of second 
derivatives with respect to the generalized nodal displacements) of the potential strain 
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energy, determined for a certain approximation U to the actual solution; AU is a correction 
for U; Q is the vector of the nodal load. 

Equation (3) is solved by the Newton--Kantorovich iteration method using the formulas 

r (Un)AU-  = q - G ( u . ) ,  un+t  = u~  + A u -  (4 )  

(n is the number of the iteration). The iteration is stopped after satisfaction of the con- 

dition I]AU"[[<6(][AU~II= max l{AUn}il, N is the order of system (3)). 
t=1,... ,N 

In each i t e r a t i o n ,  Eq. (4 ) ,  l i n e a r  wi th  r e s p e c t  to  AU n,  i s  so lved  by t h e  method of  
LTAL-expansion of the matrix r (L is a triangular matrix and A is adiagonal matrix). 

Stability is investigated on the basis of an energy criterion, confirming that a neces- 
sary and sufficient condition for stability of the equilibrium state of the deformed system 
is that the second variation of its potential derivative be positive. It ;follows from this 
that the matrix r should be positive-definite. Otherwise, the equilibrium will be unstable. 
The positive-definiteness of the matrix F can be checked by means of Sylvester's criterion, 
which in the present case reduces to checking the positiveness of the diagonal coefficients 
of matrix A. The transition of some coefficient to the negative region signifies a transi- 
tion of the shell from the stable to the unstable equilibrium state. 

To test the algorithm, we will examine a shell of the length L, radius r = i00 mm, and 
thickness h = 0.25 ,unmade of polystyrene wlth R = 5.55"103 MPa and ~ = 0.3. Turning 
moments Mt are applied to the ends of the shell, which have been reinforced with rigid 
rings. 

Figure 3 shows the dependence (curve i) of the critical values of the moment M t on the 
ratio L/r. Loss of stability occurs with the formation of from 22 i(L~r = 0.3) to 15 (L/r = 
1.0) oblique waves. Here, the triangles denote experimental results [4]. Also shown are 
the solutions obtained for the stability problem when it is assumed that the initial state 
is linear: curve 2 is the solution with allowance for the moments of ~he Initial stress-- 
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strain state; curve 3 is the solution without allowance for these moments. The latter was 
obtained on the basis of the Donnel formula [i] for the critical shear stress 

L 2 /~.5]o.b~ 
YS=I__~Z~L] 

It is evident that allowance for the moments of the initial state lowers the critical load 
up to 15%, while allowing for the moments and nonlinearity lowers the critical load up to 
22%. 

We will examine a cantilevered cylindrical shell (radius r, length L = 0.5r, thickness 
h = 0.01r) with a free end reinforced by a rigid ring. The shell is loaded by bending M b 
and turning M t moments applied to the free end. The following critical values were obtained 
for the moments in pure bending and oure torsion: ~ = 1.175~, M~ = 1.536M T (Ms = ~r2Ts, 

M r = ~r2hTs, T s = Eh2/(r ~3(1--~2))). To find the exact solution, it is sufficient to sub- 
divide the shell lengthwise and about the circumference into m = 8 and k = 32 elements in 
pure bending and m = I0 and k = 20 elements in pure tension. The convergence of the solu- 
tion in relation to the number of finite elements is shown in Table i. In the case of com- 
bination loading with the moments M b and Mt, we studied the stability of the shell with m = 
12 and k = 34. 

The solid curve in Fig. 4 shows the relation between the parameters R t = Mt,/M ~ and 
R s = Mb,/~ ~ for combination loading (Mt, and Mb, are the critical values of the moments for 
combination loading). For comparison, the dashed line shows the analogous relation recom- 
mended in [i] for shells of moderate length. 

Combination loading results in a complex configuration for both the initial deflection 
and the bifurcative deflection w. For R t = 0.84, Fig. 5 shows the mode of deflection in the 
initial state. It is close to the configuration of the deflection w in pure bending. In 
the case of bifurcation, the deflections are localized in the region of axial compression 
(Fig. 6) and have the form of oblique waves with their maximum amplitude in the region of 
greatest compression. 
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